Administrarea transcutanata a medicamentelor: o abordare microtennologica

Ciprian Iliescu, Institute of Bioengineering and Naterechnology

Cercetarea stiintifica in Singapore

- Tinta: Industrie condusa de R &D
- Economie bazata in principal pe: Industria petroliera, Banking, Santier naval, *Microelectronica*, *Biofarmaceutica*
- Nr personalului angajat in cercetare a crescut de la 12000 in 2001 la 25.000 in 2009 (si populatia a cresut de la 3.5 mil in 2001 la 5 mil in 2010)
- Investitile anuale in cercetare: 2 miliarde de Euro
- Agentia de stiinta divizata in doua ramuri: inginerie (microtechnologie) si biomedicala.
- Invatamintul universitar este axat pe dezvoltarea celor doua ramuri
- Modalitati de finanta:
 - Finatare directa de la agentie
 - Aplicatii Proiecte

Institute of Bioengineering and Nanotechnology

- Infintat in Martie 2003 (ED Prof Jackie Ying)
- Personal: 150 / inlusiv studenti
- No 7 in Asia
- Target : cercetare interdisciplinara cu aplicatii in Biologie si Medicina
- Arii de cercetare:
 - Cell and Tissue Engineering
 - Biosensors and Biodevices
 - Drug and gene Delivery
 - Pharmaceutical Synthesis & Green Chemistry

Outline

General consideration regarding transdermal drug delivery

Microneedles

Microneedles with ultrasound enhancer (SEMA- method)

Summary

Drug delivery- definition and methods

Definition:

Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals.

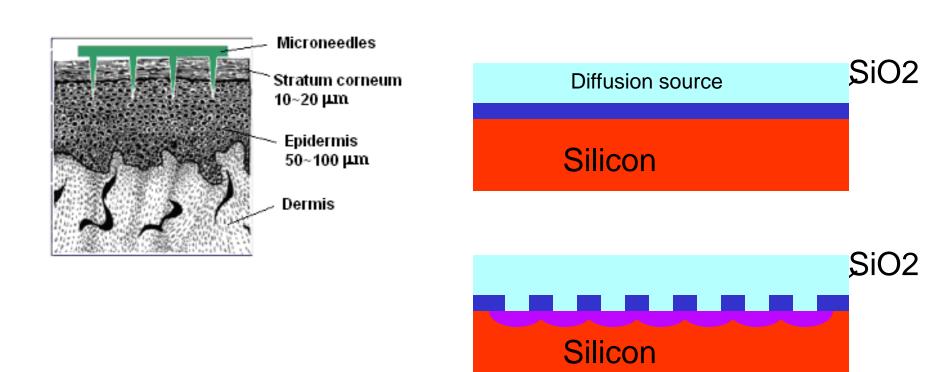
Drug delivery methods:

- Invasive: injection (protein, peptides)
- Non-invasive:
 - Peroral (through the mouth),
 - transmucosal (nasal, sublingual, vaginal, ocular and rectal)
 - inhalation routes
 - Transdermal (skin).

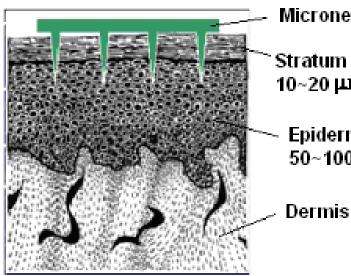
Transdermal drug delivery enhancers

Transdermal drug delivery is more advantageous due to its better patient compliance than injection and oral delivery

Problem:


- drug release is limited by low skin permeability.
- No proteins /peptides can be administered transdermal.

TDD methods:


- mechanical (microneedles)
- chemical (improve the hydrophilicity of the skin)
- electroporation
- iontophoresis
- sonophoresis

- General consideration regarding transdermal drug delivery
- Microneedles
 - µneedles for TDD
 - Why microneedles with biodegradable tips are needed?
 - Fabrication of silicon microneedles
 - Fabrication of the porous tip
 - Anodization process for the porous tips
- SEMA- method
- Summary

Skin structure and ... its equivalent in microfabrication

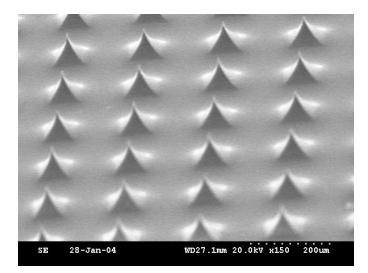
Microneedles for TDD

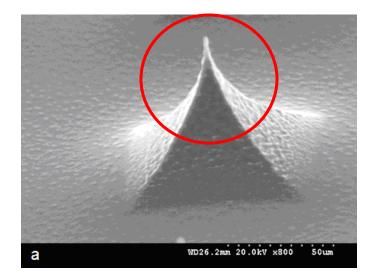
Microneedles

Stratum corneum 10~20 µm

Epidermis 50~100 µm Stratum corneum acts as a "masking layer" for the drug diffusion into the skin

Advantage:


Microneedles penetrate the skin barrier of stratum corneum, provide very high permeability with minimal invasion and uniform delivery of drugs.

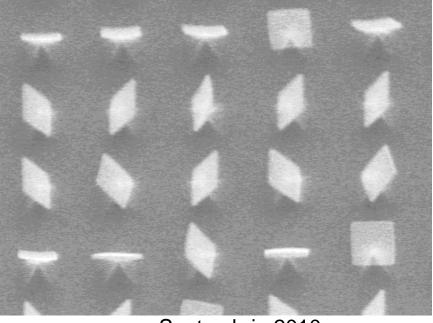

Disadvantages:

- still passive diffusion
- broking parts from the microneedle tip can cause infection
 - limited quantity of drug delivery
 - limited size of macromolecule drug

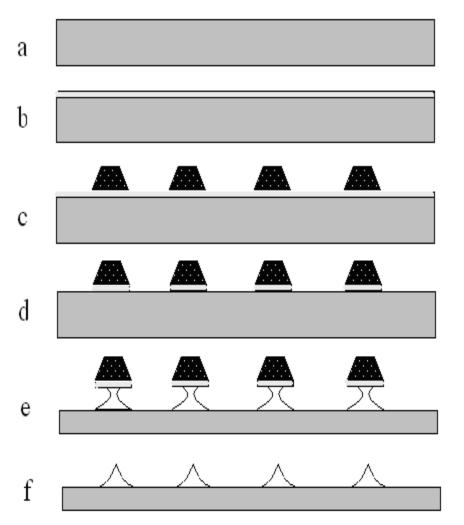
Why microneedles with biodegradable tips are needed?

Silicon microneedles are fragile, but with high aspect-ratio, easily broken in the skin and may cause infection.

Solution:

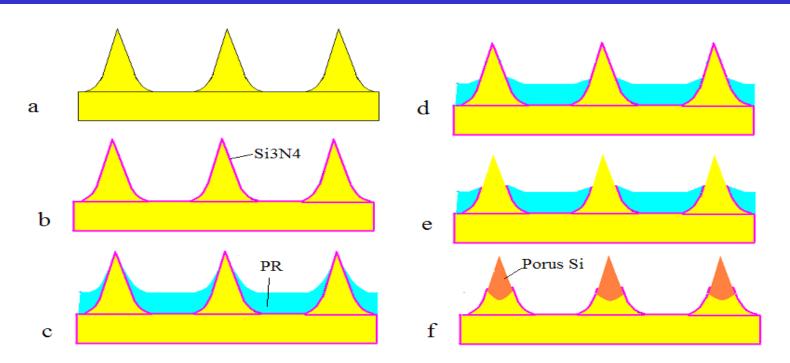

mesoporous silicon tips (biodegradable)

Fabrication of silicon microneedles


Isotropic deep RIE

╋

notching effect of reflected charges on the masking layer



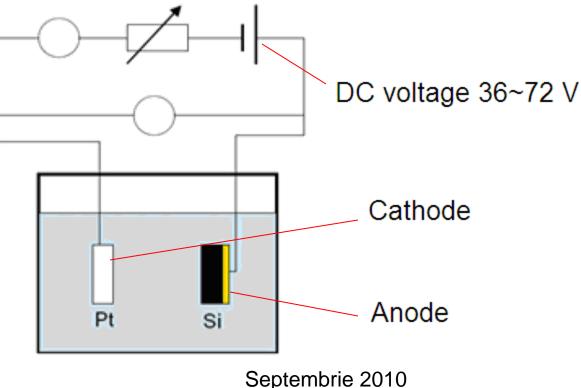
Fabrication of silicon microneedles

- a) Silicon wafer
- b) 1µm-thick SiO2 (PECVD)
- c) AZ 9620 photoresist mask (overheated)
- d) RIE etch of the SiO2
- e) Isotropic etching of silicon
- f) (Removing of the mask)

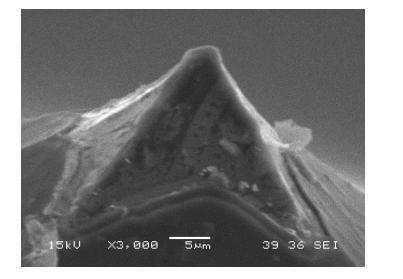
Fabrication of the porous tip

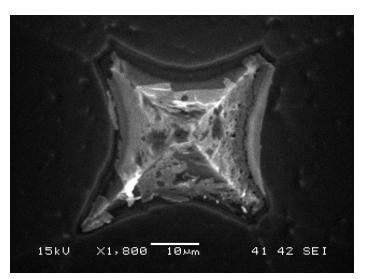
a) microneedles fabrication; b) Low stress PECVD Si3N4 deposition;

- c) Photoresist deposition; d) O2 plasma etch of PR
- e) Si3N4 etch in plasma; f) Porous Si process


Anodization process for the porous tip

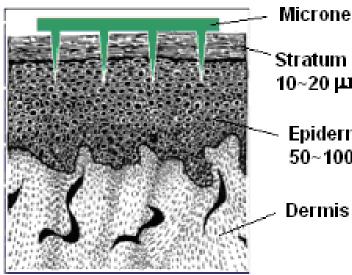
Method: anodic electrochemical etching process


Chemical Solution:


MeCN : HF : $H_2O = 92\%$: 4% : 4% by weight

Electrical power: DC 36~72 V, current intensity 10 mA.cm^2

Results



Microneedle with biodegradable tip

- General consideration regarding transdermal drug delivery
- Microneedles
- Microneedles with ultrasound enhancer (SEMA- method)
 - General considerations
 - SEMA method
 - Process flow of the TDD using SEMA
 - Fabrication of hollow microneedles array
 - Low frequency sonophoresis
 - Testing
 - Considerations regarding thermal effect
- Summary

General considerations

Microneedles

Stratum corneum 10~20 µm

Epidermis 50~100 µm Stratum corneum acts as a "masking layer" for the drug diffusion into the skin

Advantage:

Microneedles penetrate the skin barrier of stratum corneum, provide very high permeability with minimal invasion and uniform delivery of drugs.

Disadvantages:

- still passive diffusion
- broking parts from the microneedle tip can cause infection

Target: insulin

Drug diffusion

The **drug flux** *F* through the skin is proportional with the concentration gradient as given by the Fick's first law:

$$F = -D\frac{\partial C}{\partial x}$$

where **D** is the diffusion coefficient while $\partial C/\partial x$ is the concentration gradient.

The flux gradient $\partial F/\partial x$ is proportional with the change of concentration in time and is approximated by the Fick's second law of diffusion:

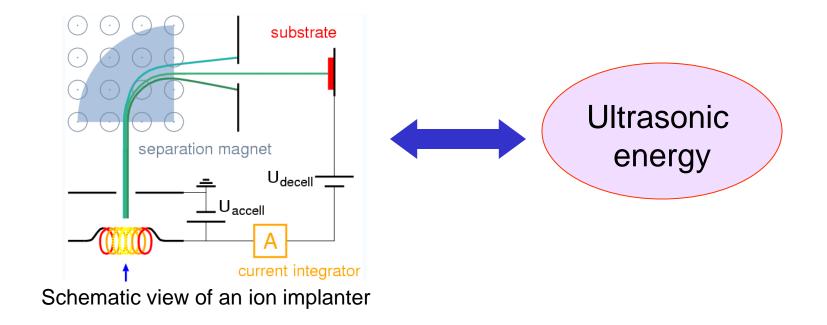
$$\frac{\partial C(x,t)}{\partial t} = -\frac{\partial F}{\partial x} = D \frac{\partial^2 C}{\partial x^2}$$

where the concentration *C* is a function of position *x* and time *t*, while *D* is assumed to be constant.

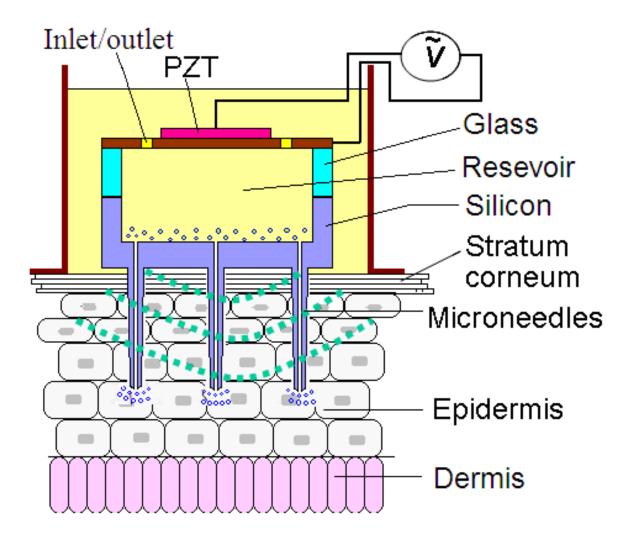
Drug diffusion

Under these conditions eqn. can be simplified to:

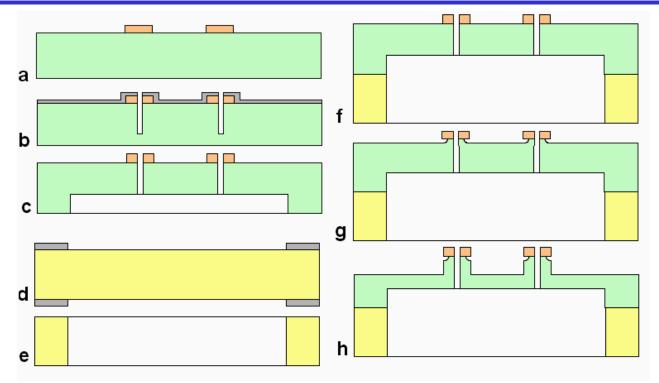
$$\frac{dm}{dt} = D\frac{C_0}{h}$$


where *m* is the mass of permeant that passes per unit area through membrane in the time *t*, *Co* is the concentration of the source and *h* is the membrane thickness.

Speaking in general terms, the diffusion coefficient *D* is a function of the activating energy *Ea* and temperature *T*:


D = f(Ea, T)

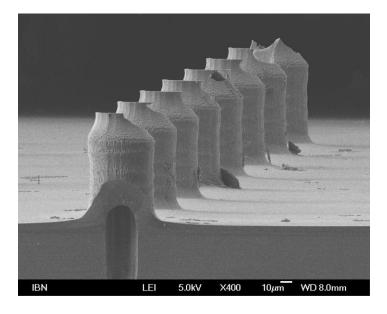
Drug diffusion- "drug implantation"


- Temperature can not b sensitively modify in transdermal drug delivery
- Only solution can be improving the activation energy

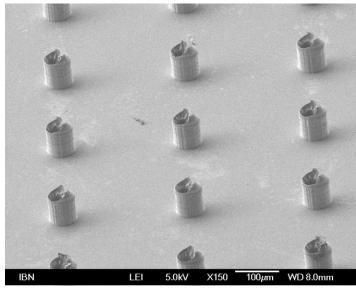
SEMA method

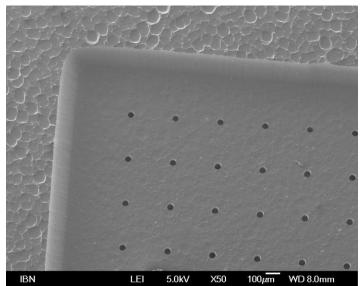
Fabrication of hollow microneedles array

Typical process for silicon microneedles

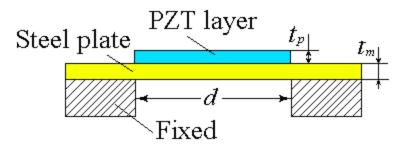

a) patterning of SiO2 layer; b) etching and oxidation of the holes;

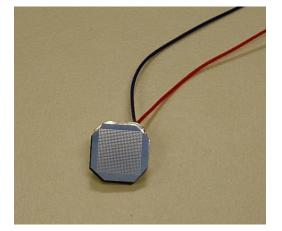
c) DRIE to get the reservoir; d) patterning the glass substrate;


e) etching of glass holes; f) bonding of the silicon with glass substrate,


g) Isotropic etching of needle tips; (i) DRIE to get needle out-rings

Fabrication of microneedles array

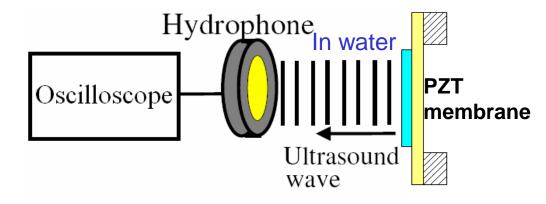

Typical dimensions of the microneedles: Length of 100 μ m, out-diameter of 50~80 μ m, inner-diameter of 30~40 μ m



Low frequency sonophoresis

- PZT bar was used as ultrasound emitter to generate sonophoresis
- Key parameters of the PZT bar:

PZT thickness $t_p = 200 \ \mu m$, steel substrate $t_m = 200 \ \mu m$.

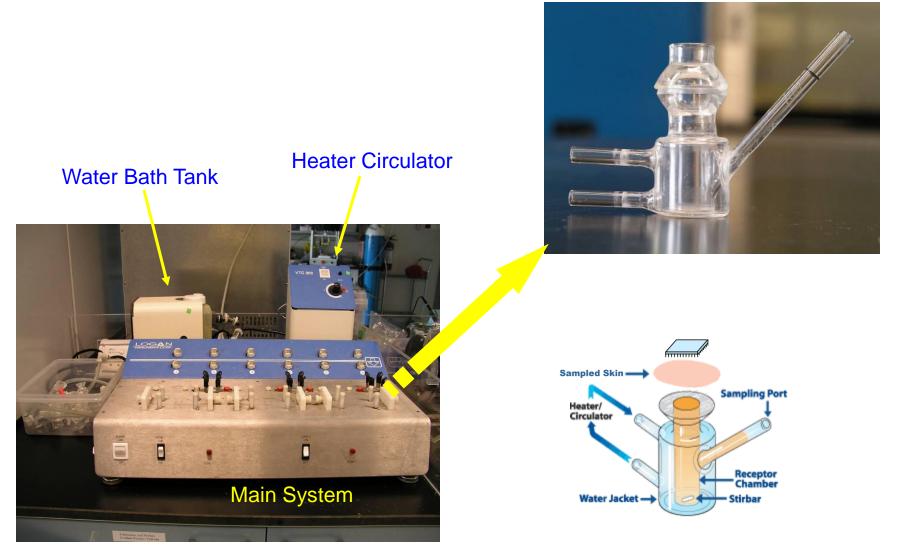


Measured resonant frequency is 21 kHz

Working frequency

- Why not therapeutic ultrasound (1~3 MHz)? The cavitational effect is reversely proportional to the ultrasound frequency.
- Low frequency (20 kHz ~ 50 kHz) sonophoresis proved to have better enhancement on TDD of macromolecules.

Low frequency sonophoresis


$$I = \frac{P^2}{\rho C} \quad \begin{array}{l} P - \text{ sound pressure} \\ \rho - \text{ density of media} \\ C - \text{ sound speed in media} \end{array}$$

The threshold intensity of 20 kHz ultrasound is 0.11 W/cm².

Safety concerns:

- The minimal thermal effect doesn't induce skin lesion or necrosis at ${\sim}\mu m$ level.
- Literature suggested that the integrity of insulin and peptides are not degraded
- Obvious skin lesions might be induced at intensities > 2.5 W/cm^2

Testing setup for TDD

Skin preparation

Skin Preparation Protocol:

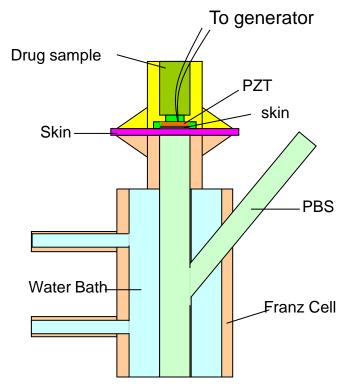
- 1. Excise the skin from abdominal area of rats/pigs;
- 2. Remove the hair from the sampled skins;
- 3. Remove the adhering fat and other visceral debris by tweezers;
- Scrape off the underlying subcutaneous fat to leave the skin to be 1.5 mmthick;
- 5. Wash the skin with physiological saline;
- 6. Wrap the skin in aluminum foil;

7. Store at -80°C

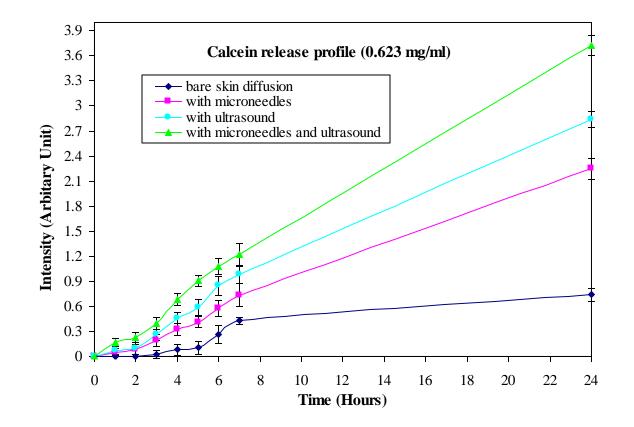
Rat Skin

Pig Skin

In vitro drug release with animal skin

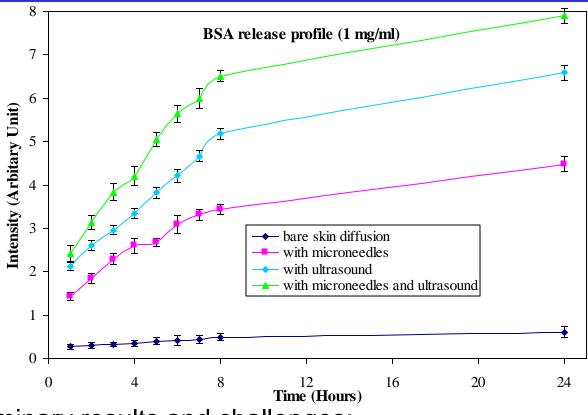


Diffusion tool: Franz diffusion cell


Skin model: rat skin, pig skin

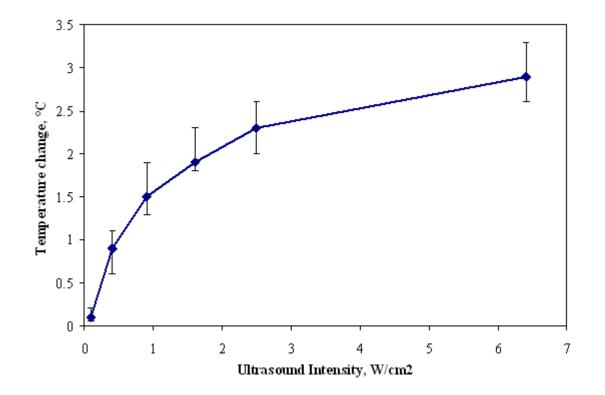
Experiment set-up

Drug model: Calcein, BSA, Insulin (detected by UV spectra) Microneedles: 30 by 30 array, length 100 μm, diameter 60 μm Ultrasound energy: 20 kHz, 20% duty, intensity of 0.1~1 W/cm² Septembrie 2010


In vitro calcein drug release in animal skin

The *in-vitro* release profile was dependent on the skin and drugs

• For calcein release, the skin permeability was greatly enhanced (about 5 times) by the microneedles in comparison with the passive diffusion, 7 times for sonophoresis and further enhanced (\sim 9×) using SEMA.


In vitro BSA drug release in animal skin

Preliminary results and challenges:

- The *in-vitro* release profile was dependent on the skin and drugs
- For BSA release, skin permeability enhancements of ~7 times (microneedles), ~8.5 times (sonophoresis) and ~12 times for SEMA

Thermal effect

- The temperature can induce vasodilatation !
- LFS can generates large gradients of temperature !

Summary

- Ultrasound integrated microneedle array device for TDD was designed to have better enhancements of TDD with macromolecules.
- The microneedles array were successfully fabricated with silicon materials. The device was packaged with PZT transducers.
- Characterization study showed that low-frequency and lowintensity ultrasound have better TDD enhancement.
- Preliminary *in vitro* TDD results proved the enhancement effect of ultrasound integrated microneedle device.

Thank you for your attention!